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Oscillations and dynamics in a two-dimensional prey-predator system
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Using Monte Carlo simulations we study two-dimensional prey-predator systems. Measuring the variance of
densities of prey and predators on the triangular lattice and on the lattice with eight neighbors, we conclude that
temporal oscillations of these densities vanish in the thermodynamic limit. This result suggests that such
oscillations do not exist in two-dimensional models, at least when driven by local dynamics. Depending on the
control parameter, the model could be either in an active or in an absorbing phase, which are separated by the
critical point. The critical behavior of this model is studied using the dynamical Monte Carlo method. This
model has two dynamically nonsymmetric absorbing states. In principle both absorbing states can be used for
the analysis of the critical point. However, dynamical simulations which start from the unstable absorbing state
suffer from metastablelike effects, which sometimes renders the method inefficient.
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[. INTRODUCTION Certain arguments were given by Grinstehal. that d.
=2 [12]. Numerical results for both synchronoj&13] and
Nonequilibrium, many-body systems were usually re-asynchronous model44] seem to confirm that temporal os-
garded as one of the classical domains of physics. Howevegijllations exist but only ford>2. Recently, however, nu-
recently it is becoming clear that such systems are of interesherical simulations by Rosenfeldt al. suggest that in a
also in other disciplines such as biologhl, economy{2], or  model with smart preys and predators oscillatory behavior
sociology[3]. Consequently, notions of cooperative effects,might exist even ird=2 systemg15]. They argued that the
formation of order or phase transition, which were typically oscillatory phase is induced by a certain dynamical percola-
restricted to physics, proliferate other scientific disciplines. tion transition. If this percolative mechanism would be of
An example of a multidisciplinary problem, which has more general validity, then the oscillatory phase should exist
application both in biological population dynamics and inalso in other two-dimensional models. One would then argue
hetero- or homogeneous catalysis, is the existence of tempthat the fact that this phase was not observed in some earlier
rarily periodic solutions in the so-called prey-predator sys-simulationg14] was due to for example too small a range of
tems. A closely related problem is synchronization, whichinteractions of preys and predators.
appears in various biological contexts such as heartbeats, In the present paper we examine two-dimensional ver-
wake-sleep cycles and many oth¢Ad. The earliest math- sions of a prey-predator modgl4] for the increased range
ematical model of the temporal oscillations in interactingof interaction. However, our simulations show that even with
populations was proposed by Lotka and Volterra, who dethe increased range of interaction, an amplitude of oscilla-
scribed populations of preys and predators in terms of nontions vanishes in the thermodynamic limit. Let us notice that
linear differential equationg5]. However, description of in- in three-dimensional version of the model, oscillations exist
teracting populations in terms of ordinary differential even for the nearest-neighbor interactidrigl]. Thus, our
equations, by necessity, introduces considerable simplificaesult strongly indicates that, at least for our model, there are
tions. In particular it neglects fluctuations and spatial inho-no oscillations in the casg=2.
mogeneities which are certainly present in such systems. One Usually lattice prey-predator models have an absorbing
possibility to take such effects into account is to describestate. Consequently, they might undergo a phase transition in
such systems using lattice models. The first approach of thithe steady state between active and absorbing phases, which
kind was made by Chatand Manneville[6]. Subsequently, is expected to belong to the directed percolation universality
more complicated versions of their model were studild  class[16]. Our model is characterized by two absorbing
Although in some cases these studies confirmed existence sfates. However, these states are asymmetric and only one of
periodic in time solutions, these models were driven by synthem is typically reached by the model’s dynamics. The sec-
chronous dynamics. More realistic models with asynchro-ond absorbing state can be considered as dynamically un-
nous dynamics were also examing810. As we already stable. Because of this asymmetry the model behaves as if it
mentioned, closely related models are studied in the contextas only one absorbing state and thus should exhibit directed
of catalysis[11]. percolation criticality, which was confirmed for the one-
On general grounds one expects that fluctuations in loweimensional casgl7]. Critical behavior of models with ab-
dimensional systems are strong enough to destroy such terserbing states can be studied using the so-called dynamical
poral oscillations in the thermodynamic limit. An important Monte Carlo method19]. In this method we prepare the
question is: what is the critical dimensiahy above which  system in an absorbing state and locally activate it. Statistics
such oscillations will survive in the thermodynamic limit. of such runs provide a very efficient method to study the
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critical behavior of such models. This method was alreadyhas two absorbing states. The first dRREY) is filled with
applied to a number of models with a single absorbing statpreys =1, y=0) and the second on&EMPTY) is empty
or with double but symmetric ond®0]. We are, however, (x=y=0). For large enough, both populations coexist and
not aware of studies for models with asymmetric absorbinghe model is in the active phase>0, y>0). When the
states. We show that when dynamical simulations start fronupdate rate of preys decreases, their number become to
an unstable absorbing state they suffer from metastable-likemall to support predators. For sufficiently snrafiredators
effects, which in the two-dimensional case renders thealie out and the system quickly reaches the absorbing state
method inefficient. In the one-dimensional case this effect iPREY. In the simplest case, when the neighboring sites are
much weaker and both absorbing states can be used to ewearest neighbors, the phase transition between active and
tract information about the critical point. absorbing phase was observed at positife d=1,2,3[17].

In Sec. Il we define the model, briefly mention the resultsFor d=1 (linear chain Monte Carlo simulations show that,
of the simple mean-field approximations, and study the flucas expected, the phase transition belongs to the directed per-
tuations of densities of populations. In Sec. Il we present theolation universality class.
results of the dynamical Monte Carlo method. Section IV To get additional insight into the behavior of the model

contains our conclusions. we can use a mean-field approximation. In its simplest ver-
sion one describes the model solely in terms of denskies
Il. MODEL AND ITS STEADY-STATE SIMULATIONS andy [which are strictly speaking time average quantities

defined in Eq.(1)]. From the dynamics of the model and

In our model on each site of @dimensional Cartesian typjical mean-field assumptions one can easily arrive at the
lattice of linear sizeN we have a four-state variable fojiowing equationg14,17:

¢=0,1,2,3, which corresponds to the site being empty

(e=0), occupied by a preye=1), occupied by a predator dx w
(e=2) or occupied by a prey and a predatoe=(3). m=rx(1—x )= (1=r)xy, )
Dynamics of this model is specified as folloys4]:

(i) Choose a site at randofsayith). dy

(i) With the probabilityr (0<r<1) update a prey at the a:(1—r)xy(l—yW)—(l—r)y(l—x), ©)

chosen site, provided that there is dine., e=1 or 3); oth-

erwise do nothing. Provided that at least one neighbor of thgnerew is the number of neighboring sitésee the dynami-
chosen site is not occupied by a préye., =0 or 2, the ¢4 rule (i) and iii )]. Predictions of such an approximation
prey (which is to be updatedproduces one offspring and s however, substantially different from the behavior of the
places it on the empty neighboring sitié there are more  mnode| as observed in Monte Carlo simulatidag]. In par-
empty sites, one of them is chosen randomi®therwise ticylar, approximationg2) and (3) fail to predict a phase
(i.e., when there is a prey on each neighboring) shie prey  {ransition between active and absorbing phases at positive

does not breeddue to overcrowding and for any dimension. Moreover, there is no indication of
(iii) With the probability I-r update a predator at the the oscillatory phase as observed in the3 case.
chosen site, provided that there is dine., e=2 or 3. Pro- An improved version of the mean-field approximation can

vided that the chosen site is occupied by a predator but is n¢je obtained introducing a third variabte which denotes a
occupied by a preyq=2), the predator dietf hunger. If  gensity of sites occupied by a prey and a predator 3).

there is a prey on that sitée., e=3), the predator survives Then, the mean-field equations are written as
and consumes the prey from the site it occupies. If there is at

least one neighboring site which is not occupied by a preda- X
tor, the predator produces one offspring and places it on the a=rx(1—xw)—(1—r)z, 4
empty site (chosen randomly when there are more such
sites. dy
To complete the description of this model we have to —=(1-nz(l-y")—(1-r)(y—2), (5

specify what are the neighboring sites, i.e., sites where off- dt
springs can be placed. In previous studies of this model these q 1 xW
were just nearest neighbols4,17. In the present paper of z_mx(A-x"(y-2)

our main concern ard=2 models with further(but finite) dt 1-x

range. _ Cy— W
Steady-state description of our model is given in terms of _ (1=nz(1+z=x=y)(1—-y")
densities of preyx and predatory defined as 1-y

—(1-r)zy". (6)

In the approximation$2) and(3) the density of sites that are
(1) occupied by a prey and a predator is simply given by the

productxy. In the approximatiori4)—(6) this is an indepen-
where summation is over al® sitesi and 8 is Kronecker's  dent variable, whose time evolution follows from the dy-
6 function. From the above rules it follows that the modelnamical rules of the model. Numerical solution of EGY—

1 1
X= m EI (5si,l+ 5si,3)v y= m zl (6ei,2+ 5€i,3)1
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FIG. 1. The variance of the density of preys as a function Nf 1/ FIG. 2. The variance of the density of preys as a function Nf 1/
for the model on the triangular lattice. Simulations were made forfor the model on the lattice with nearest- and next-nearest neigh-
r=0.4 (d), 0.3 (*), 0.2 (X), and 0.15(+). bors. Simulations were made for=0.35 (+), 0.3 (X), and 0.25

(+).
(6) shows that this approximation is indeed more accurate
[18]. In particular, it predicts that fow=4 (which could be One factor which is omitted in our approach is diffusion.
interpreted asl=2) there is a range afin the active phase Our organisms diffuse only effectively through the breeding
where nonvanishing oscillations exist. Ree=4 (i.e., square process. In related two-dimensional models, which were
lattice) this is still at odds with Monte Carlo simulations studied in the context of heterogeneous catalysis, diffusion
[14]. Let us emphasize that both Monte Carlo simulationswas taken into accoui2l]. It seems, however, that as long
and mean-field calculations are essentially independent oas the diffusion constant is finite, the amplitude of oscilla-
the initial configurationprovided, of course, we do not start tions vanishes in the thermodynamic limit.
from an absorbing state

To examine the oscillatory behavior, one can measure the 1Il. DYNAMICAL MONTE CARLO
standard deviation of the densities defined as ) ) ]

— {((x={x))?) and analogously for the densities of preda- The.essence of this method is to prepare the system in an
torsy. The symbok - - -}, denotes time average in the Steadyabsorb!ng state and to actlvate_|t locala]. Quan_tlt_les pf
state. It was found that fod— o o=, always decreases to the main interest are the pro_babll_ityt)_ that Fhe act|V|ty_d|d
zero ford=1,2 [14]. However, ford=3 there is a certain not die out until timet (the unit qf time is defined as a single,
range ofr in the active phase and such tharemains finite on average, update of each sigd the average number of

for N—o. Such a behavior indicates that finite—amplitudeac_t?ve _sitesN(t) (average_d over all rupsOne expects that at
oscillations survive in the thermodynamic limit criticality these quantities have the power-law behavior:

- 75 — o
To check whether an increased range of interactions migl’ﬁ)(t) % N(T)~t7, wheres, and» are critical exponents

stabilize oscillations in two-dimensional systems, we simu-tharacteristic to a given universality class. Off the critical

lated our model on the triangular lattice and on the lattice®®Int P(t) andN(t) deviate from the power-law behavior.
with 8 neighbors(square lattice with nearest- and next- '€ applied the dynamical Monte Carlo method to the

nearest neighborsOn such lattices the parent site that is two-dimensional model with nearest neighbor interactions

supposed to breed looks for an empty site among 6 or 8
neighboring sites, respectively. On such lattices we also ob- 2 |
served a phase transition into absorbing phase araund
~0.06-0.08. Similarly to other latticg44], for r larger but
close to the transition point fluctuations of densities exhibit
oscillatory-like behavior. However, analysis of the variance
of this fluctuations showsésee Fig. 1 and Fig.)2hat in the
thermodynamic limit amplitude of oscillations vanishes.
Simulations were made foN=<1000 and simulation time
was long enough to ensure that error bars are smaller than 05+
the plotted symbols.

Let us notice that for the lattice with 8 neighbors the
coordination number is greater than that in the three-
dimensional(cubic lattice case. While in the former case

oscillations die out in the thermodynamic limit, they survive  F|G. 3. The average number of predatbt@) as a function of

in the latter one[14]. It indicates that in two-dimensional time t for the model on the square lattice with the absorbing state
systems oscillations are unlikely. However, such a concluprEY. Simulations were made féfrom top) r=0.1099, 0.1098,
sion, if true, is applicable only to models equipped with local0.1097, and 0.1096. The dotted line has a slope 0.23 which corre-
dynamics. sponds to the exponent in (2+1) DP[20].

15 ¢
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FIG. 4. The survival probability of predatoR(t) as a function FIG. 6. The average number of predatdtf) as a function of
of time t for the model on the square lattice with the absorbing statdime t for the model on the square lattice with the absorbing state
PREY. Simulations were made forom top) r:Ologgy 01098’ EMPTY. Simulations were made f(!ﬁfl’om tOp) r:0.25, 02, 015,
0.1097, and 0.1096. The dotted line has a slope 0.451 which corréind 0.12.
sponds to the exponewtin (2+1) DP[20].

clude that the phase transition is located Btr,

(square lattice In this case the steady-state calculations=0.1097%5), which is far more accurate than the steady-
show that the model undergoes a transitiomat ,~0.11.  state estimation. Moreover, one can see that our data upon
Our results in the case of the absorbing state PREY arapproaching the critical point have a power-law behavior
shown in Fig. 3 and Fig. 4. As an initial configuration we put with exponents consistent witt2+1) directed percolation
all sites in a prey stateeE=1), except one, randomly se- [20].
lected, site which is in a prey-predator state=3). Actu- Now, let us apply the dynamical Monte Carlo in the case
ally, in our model there are two quantities which scale ap-of the EMPTY absorbing state. As an initial configuration we
proximately in the same way, namely, the number ofput all sites in an empty state€0), except one, randomly
predators and the number of active sifassite is active if it  selected, site which is in a prey-predator state-8). Nu-
contains a predator, a prey and predator or a prey which imerical results are shown in Fig. 5 and Fig. 6. In these simu-
surrounded by at least one site without a prdy calculate lations the system is in the active phase>f.) and rela-
P(t) andN(t) we considered only the number of predatorstively far from the critical point. Although the survival
(when this number becomes zero we stop a given)tbat  probability P(t) saturates for largeits asymptotic values are
qualitatively the same results are obtained when the numberery low (Fig. 5. For example, to confirm with this method
of active sites is considered. Using the dynamical Montethat for r=0.12 the system is in the active phase tens of
Carlo method it is important to ensure that the spreadingnillions of runs must be made. The reason for that is that for
activity does not reach the boundary of the system. Wemost of the runs predators die out very quickly. Only very
checked that the value which we useédi=2000) was suffi- few runs generate sufficiently many preys which can support
ciently large. From the behavior ¢f(t) and N(t) we con- the population of predators. If the population of predators

2
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0 0.5 1 1.5 2 25 3 35
log (1) FIG. 7. The average number of predatbl@) as a function of
timet for the model on the one-dimensional lattice with the absorb-
FIG. 5. The survival probability of predatoRt) as a function ing state PREY and EMPTY. For each absorbing state simulations
of timet for the model on the square lattice with the absorbing statevere made fofrom top) r =0.493, 0.491, and 0.489. The slope of
EMPTY. Simulations were made fdfrom top) r=0.25, 0.2, 0.15, the critical(centra) lines is very close to thél+1) directed perco-
and 0.12. lation valuen=0.314[20].
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survives for a certain time, then, most likely, it will survive case, the formation and growth of the active seed is more
for an infinitely long time spreading through the systésee = complicated.
Fig. 6). We expect that such a behavior exists for any
>r.. However, forr close tor. the long-time survival

events are extremely unlikely, which renders this method in- |n the present paper we studied oscillatory and dynamical
efficient. properties of the two-dimensional prey-predator systems.
Our model in this case resembles a metastable syste@ur results show that even for the increased range of inter-
[22]. Such a system can exit the metastable state onlgctions an amplitude of oscillations vanishes in the thermo-
through formation of a sufficiently large seed of the stabledynamic limit. It might suggest, as found by Grinsteinal.
phase. In our case the EMPTY absorbing state corresponds a related contexf12], that oscillations might persist but
for r>r to a metastable state. Only when a sufficiently largeonly for d>2.
island of the active state occurs, the system is irreversibly In addition to that, we examined the validity and effi-
driven toward the activéstable state. ciency of the dynamical Monte Carlo method for a model
However, this metastable effect is much weaker in oneWith two asymmetric absorbing states. It turns out that for an
dimensional systems. In this case the critical point ig at Unstable absorbing state in the two-dimensional system this
=r,=0.491(2) [17]. Dynamical Monte Carlo simulations method is very inefficient. On the other hand, both absorbing

for both PREY and EMPTY absorbing states are reIativerStateS can be used within this method in a one-dimensional
efficient (see Fig. 7. In the case of the EMPTY absorbing M°del.
state only a mild decrease Bf(t) is seen for smalt.

We do not fully understand why metastability is much
weaker in thed=1 case. Most likely it is due to a much  A.L.F. acknowledges financial support from the project
easier formation of a sufficiently large seed of a stable phas€2OCTI/33141/99. A.L. was partially supported by the Swiss
Outward spreading of such an active seed resembles a biasRtional Science Foundation and Project No. OFES 00-0578
random walk and thus grows steadily in time. In tthe 2 “COSYC OF SENS.”

IV. CONCLUSIONS
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