
PHYSICAL REVIEW E 66, 066107 ~2002!
Oscillations and dynamics in a two-dimensional prey-predator system

Małgorzata Kowalik,1 Adam Lipowski,1,2 and Antonio L. Ferreira3
1Department of Physics, A. Mickiewicz University, 61-614 Poznan´, Poland

2Department of Physics, University of Geneva, CH 1211 Geneva 4, Switzerland
3Departamento de Fisica, Universidade de Aveiro, 3810-193 Aveiro, Portugal

~Received 21 May 2002; published 9 December 2002!

Using Monte Carlo simulations we study two-dimensional prey-predator systems. Measuring the variance of
densities of prey and predators on the triangular lattice and on the lattice with eight neighbors, we conclude that
temporal oscillations of these densities vanish in the thermodynamic limit. This result suggests that such
oscillations do not exist in two-dimensional models, at least when driven by local dynamics. Depending on the
control parameter, the model could be either in an active or in an absorbing phase, which are separated by the
critical point. The critical behavior of this model is studied using the dynamical Monte Carlo method. This
model has two dynamically nonsymmetric absorbing states. In principle both absorbing states can be used for
the analysis of the critical point. However, dynamical simulations which start from the unstable absorbing state
suffer from metastablelike effects, which sometimes renders the method inefficient.
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I. INTRODUCTION

Nonequilibrium, many-body systems were usually
garded as one of the classical domains of physics. Howe
recently it is becoming clear that such systems are of inte
also in other disciplines such as biology@1#, economy@2#, or
sociology@3#. Consequently, notions of cooperative effec
formation of order or phase transition, which were typica
restricted to physics, proliferate other scientific discipline

An example of a multidisciplinary problem, which ha
application both in biological population dynamics and
hetero- or homogeneous catalysis, is the existence of tem
rarily periodic solutions in the so-called prey-predator s
tems. A closely related problem is synchronization, wh
appears in various biological contexts such as heartbe
wake-sleep cycles and many others@4#. The earliest math-
ematical model of the temporal oscillations in interacti
populations was proposed by Lotka and Volterra, who
scribed populations of preys and predators in terms of n
linear differential equations@5#. However, description of in-
teracting populations in terms of ordinary differenti
equations, by necessity, introduces considerable simplifi
tions. In particular it neglects fluctuations and spatial inh
mogeneities which are certainly present in such systems.
possibility to take such effects into account is to descr
such systems using lattice models. The first approach of
kind was made by Chate´ and Manneville@6#. Subsequently,
more complicated versions of their model were studied@7#.
Although in some cases these studies confirmed existenc
periodic in time solutions, these models were driven by s
chronous dynamics. More realistic models with asynch
nous dynamics were also examined@8–10#. As we already
mentioned, closely related models are studied in the con
of catalysis@11#.

On general grounds one expects that fluctuations in l
dimensional systems are strong enough to destroy such
poral oscillations in the thermodynamic limit. An importa
question is: what is the critical dimensiondc above which
such oscillations will survive in the thermodynamic lim
1063-651X/2002/66~6!/066107~5!/$20.00 66 0661
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Certain arguments were given by Grinsteinet al. that dc

52 @12#. Numerical results for both synchronous@6,13# and
asynchronous models@14# seem to confirm that temporal os
cillations exist but only ford.2. Recently, however, nu
merical simulations by Rosenfeldet al. suggest that in a
model with smart preys and predators oscillatory behav
might exist even ind52 systems@15#. They argued that the
oscillatory phase is induced by a certain dynamical perco
tion transition. If this percolative mechanism would be
more general validity, then the oscillatory phase should e
also in other two-dimensional models. One would then arg
that the fact that this phase was not observed in some ea
simulations@14# was due to for example too small a range
interactions of preys and predators.

In the present paper we examine two-dimensional v
sions of a prey-predator model@14# for the increased range
of interaction. However, our simulations show that even w
the increased range of interaction, an amplitude of osci
tions vanishes in the thermodynamic limit. Let us notice th
in three-dimensional version of the model, oscillations ex
even for the nearest-neighbor interactions@14#. Thus, our
result strongly indicates that, at least for our model, there
no oscillations in the cased52.

Usually lattice prey-predator models have an absorb
state. Consequently, they might undergo a phase transitio
the steady state between active and absorbing phases, w
is expected to belong to the directed percolation universa
class @16#. Our model is characterized by two absorbin
states. However, these states are asymmetric and only o
them is typically reached by the model’s dynamics. The s
ond absorbing state can be considered as dynamically
stable. Because of this asymmetry the model behaves as
has only one absorbing state and thus should exhibit dire
percolation criticality, which was confirmed for the on
dimensional case@17#. Critical behavior of models with ab
sorbing states can be studied using the so-called dynam
Monte Carlo method@19#. In this method we prepare th
system in an absorbing state and locally activate it. Statis
of such runs provide a very efficient method to study t
©2002 The American Physical Society07-1
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critical behavior of such models. This method was alrea
applied to a number of models with a single absorbing s
or with double but symmetric ones@20#. We are, however,
not aware of studies for models with asymmetric absorb
states. We show that when dynamical simulations start fr
an unstable absorbing state they suffer from metastable
effects, which in the two-dimensional case renders
method inefficient. In the one-dimensional case this effec
much weaker and both absorbing states can be used to
tract information about the critical point.

In Sec. II we define the model, briefly mention the resu
of the simple mean-field approximations, and study the fl
tuations of densities of populations. In Sec. III we present
results of the dynamical Monte Carlo method. Section
contains our conclusions.

II. MODEL AND ITS STEADY-STATE SIMULATIONS

In our model on each site of ad-dimensional Cartesian
lattice of linear sizeN we have a four-state variabl
e i50,1,2,3, which corresponds to the site being em
(e50), occupied by a prey (e51), occupied by a predato
(e52) or occupied by a prey and a predator (e53).
Dynamics of this model is specified as follows@14#:

~i! Choose a site at random~say i th!.
~ii ! With the probabilityr (0,r ,1) update a prey at the

chosen site, provided that there is one~i.e., e51 or 3!; oth-
erwise do nothing. Provided that at least one neighbor of
chosen site is not occupied by a prey~i.e., e50 or 2!, the
prey ~which is to be updated! produces one offspring an
places it on the empty neighboring site~if there are more
empty sites, one of them is chosen randomly!. Otherwise
~i.e., when there is a prey on each neighboring site! the prey
does not breed~due to overcrowding!.

~iii ! With the probability 12r update a predator at th
chosen site, provided that there is one~i.e., e52 or 3!. Pro-
vided that the chosen site is occupied by a predator but is
occupied by a prey (e52), the predator dies~of hunger!. If
there is a prey on that site~i.e., e53), the predator survives
and consumes the prey from the site it occupies. If there i
least one neighboring site which is not occupied by a pre
tor, the predator produces one offspring and places it on
empty site ~chosen randomly when there are more su
sites!.

To complete the description of this model we have
specify what are the neighboring sites, i.e., sites where
springs can be placed. In previous studies of this model th
were just nearest neighbors@14,17#. In the present paper o
our main concern ared52 models with further~but finite!
range.

Steady-state description of our model is given in terms
densities of preysx and predatorsy defined as

x5
1

Nd (
i

~de i ,1
1de i ,3

!, y5
1

Nd (
i

~de i ,2
1de i ,3

!,

~1!

where summation is over allNd sitesi andd is Kronecker’s
d function. From the above rules it follows that the mod
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has two absorbing states. The first one~PREY! is filled with
preys (x51, y50) and the second one~EMPTY! is empty
(x5y50). For large enoughr, both populations coexist an
the model is in the active phase (x.0, y.0). When the
update rate of preysr decreases, their number become
small to support predators. For sufficiently smallr predators
die out and the system quickly reaches the absorbing s
PREY. In the simplest case, when the neighboring sites
nearest neighbors, the phase transition between active
absorbing phase was observed at positiver for d51,2,3 @17#.
For d51 ~linear chain! Monte Carlo simulations show tha
as expected, the phase transition belongs to the directed
colation universality class.

To get additional insight into the behavior of the mod
we can use a mean-field approximation. In its simplest v
sion one describes the model solely in terms of densitiex
and y @which are strictly speaking time average quantit
defined in Eq.~1!#. From the dynamics of the model an
typical mean-field assumptions one can easily arrive at
following equations@14,17#:

dx

dt
5rx~12xw!2~12r !xy, ~2!

dy

dt
5~12r !xy~12yw!2~12r !y~12x!, ~3!

wherew is the number of neighboring sites@see the dynami-
cal rule ~ii ! and ~iii !#. Predictions of such an approximatio
is, however, substantially different from the behavior of t
model as observed in Monte Carlo simulations@14#. In par-
ticular, approximations~2! and ~3! fail to predict a phase
transition between active and absorbing phases at positir
and for any dimension. Moreover, there is no indication
the oscillatory phase as observed in thed53 case.

An improved version of the mean-field approximation c
be obtained introducing a third variablez, which denotes a
density of sites occupied by a prey and a predator (e53).
Then, the mean-field equations are written as

dx

dt
5rx~12xw!2~12r !z, ~4!

dy

dt
5~12r !z~12yw!2~12r !~y2z!, ~5!

dz

dt
5

rx~12xw!~y2z!

12x

2
~12r !z~11z2x2y!~12yw!

12y

2~12r !zyw. ~6!

In the approximations~2! and~3! the density of sites that ar
occupied by a prey and a predator is simply given by
productxy. In the approximation~4!–~6! this is an indepen-
dent variable, whose time evolution follows from the d
namical rules of the model. Numerical solution of Eqs.~4!–
7-2
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~6! shows that this approximation is indeed more accur
@18#. In particular, it predicts that forw>4 ~which could be
interpreted asd>2) there is a range ofr in the active phase
where nonvanishing oscillations exist. Forw54 ~i.e., square
lattice! this is still at odds with Monte Carlo simulation
@14#. Let us emphasize that both Monte Carlo simulatio
and mean-field calculations are essentially independen
the initial configuration~provided, of course, we do not sta
from an absorbing state!.

To examine the oscillatory behavior, one can measure
standard deviation of the densities defined assx

5A^(x2^x&)2& and analogously for the densities of pred
torsy. The symbol̂ •••&, denotes time average in the stea
state. It was found that forN→` s5sx always decreases t
zero for d51,2 @14#. However, ford53 there is a certain
range ofr in the active phase and such thats remains finite
for N→`. Such a behavior indicates that finite-amplitu
oscillations survive in the thermodynamic limit.

To check whether an increased range of interactions m
stabilize oscillations in two-dimensional systems, we sim
lated our model on the triangular lattice and on the latt
with 8 neighbors~square lattice with nearest- and nex
nearest neighbors!. On such lattices the parent site that
supposed to breed looks for an empty site among 6 o
neighboring sites, respectively. On such lattices we also
served a phase transition into absorbing phase arounr
;0.06–0.08. Similarly to other lattices@14#, for r larger but
close to the transition point fluctuations of densities exh
oscillatory-like behavior. However, analysis of the varian
of this fluctuations shows~see Fig. 1 and Fig. 2! that in the
thermodynamic limit amplitude of oscillations vanishe
Simulations were made forN<1000 and simulation time
was long enough to ensure that error bars are smaller
the plotted symbols.

Let us notice that for the lattice with 8 neighbors t
coordination number is greater than that in the thr
dimensional~cubic lattice! case. While in the former cas
oscillations die out in the thermodynamic limit, they survi
in the latter one@14#. It indicates that in two-dimensiona
systems oscillations are unlikely. However, such a conc
sion, if true, is applicable only to models equipped with loc
dynamics.

FIG. 1. The variance of the density of preys as a function of 1N
for the model on the triangular lattice. Simulations were made
r 50.4 (h), 0.3 (* ), 0.2 (3), and 0.15~1!.
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One factor which is omitted in our approach is diffusio
Our organisms diffuse only effectively through the breedi
process. In related two-dimensional models, which w
studied in the context of heterogeneous catalysis, diffus
was taken into account@21#. It seems, however, that as lon
as the diffusion constant is finite, the amplitude of oscil
tions vanishes in the thermodynamic limit.

III. DYNAMICAL MONTE CARLO

The essence of this method is to prepare the system i
absorbing state and to activate it locally@19#. Quantities of
the main interest are the probabilityP(t) that the activity did
not die out until timet ~the unit of time is defined as a single
on average, update of each site! and the average number o
active sitesN(t) ~averaged over all runs!. One expects that a
criticality these quantities have the power-law behavi
P(t);t2d, N(T);th, whered, andh are critical exponents
characteristic to a given universality class. Off the critic
point P(t) andN(t) deviate from the power-law behavior.

We applied the dynamical Monte Carlo method to t
two-dimensional model with nearest neighbor interactio

r
FIG. 2. The variance of the density of preys as a function of 1N

for the model on the lattice with nearest- and next-nearest ne
bors. Simulations were made forr 50.35 (* ), 0.3 (3), and 0.25
~1!.

FIG. 3. The average number of predatorsN(t) as a function of
time t for the model on the square lattice with the absorbing st
PREY. Simulations were made for~from top! r 50.1099, 0.1098,
0.1097, and 0.1096. The dotted line has a slope 0.23 which co
sponds to the exponenth in ~211! DP @20#.
7-3
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~square lattice!. In this case the steady-state calculatio
show that the model undergoes a transition atr 5r c;0.11.
Our results in the case of the absorbing state PREY
shown in Fig. 3 and Fig. 4. As an initial configuration we p
all sites in a prey state (e51), except one, randomly se
lected, site which is in a prey-predator state (e53). Actu-
ally, in our model there are two quantities which scale a
proximately in the same way, namely, the number
predators and the number of active sites~a site is active if it
contains a predator, a prey and predator or a prey whic
surrounded by at least one site without a prey!. To calculate
P(t) andN(t) we considered only the number of predato
~when this number becomes zero we stop a given trial! but
qualitatively the same results are obtained when the num
of active sites is considered. Using the dynamical Mo
Carlo method it is important to ensure that the spread
activity does not reach the boundary of the system.
checked that the value which we used (N52000) was suffi-
ciently large. From the behavior ofP(t) and N(t) we con-

FIG. 5. The survival probability of predatorsP(t) as a function
of time t for the model on the square lattice with the absorbing s
EMPTY. Simulations were made for~from top! r 50.25, 0.2, 0.15,
and 0.12.

FIG. 4. The survival probability of predatorsP(t) as a function
of time t for the model on the square lattice with the absorbing s
PREY. Simulations were made for~from top! r 50.1099, 0.1098,
0.1097, and 0.1096. The dotted line has a slope 0.451 which co
sponds to the exponentd in ~211! DP @20#.
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clude that the phase transition is located atr 5r c
50.10975(5), which is far more accurate than the stead
state estimation. Moreover, one can see that our data u
approaching the critical point have a power-law behav
with exponents consistent with~211! directed percolation
@20#.

Now, let us apply the dynamical Monte Carlo in the ca
of the EMPTY absorbing state. As an initial configuration w
put all sites in an empty state (e50), except one, randomly
selected, site which is in a prey-predator state (e53). Nu-
merical results are shown in Fig. 5 and Fig. 6. In these sim
lations the system is in the active phase (r .r c) and rela-
tively far from the critical point. Although the surviva
probabilityP(t) saturates for larget its asymptotic values are
very low ~Fig. 5!. For example, to confirm with this metho
that for r 50.12 the system is in the active phase tens
millions of runs must be made. The reason for that is that
most of the runs predators die out very quickly. Only ve
few runs generate sufficiently many preys which can supp
the population of predators. If the population of predato

e

FIG. 6. The average number of predatorsN(t) as a function of
time t for the model on the square lattice with the absorbing st
EMPTY. Simulations were made for~from top! r 50.25, 0.2, 0.15,
and 0.12.

FIG. 7. The average number of predatorsN(t) as a function of
time t for the model on the one-dimensional lattice with the abso
ing state PREY and EMPTY. For each absorbing state simulat
were made for~from top! r 50.493, 0.491, and 0.489. The slope
the critical~central! lines is very close to the~111! directed perco-
lation valueh50.314@20#.
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survives for a certain time, then, most likely, it will surviv
for an infinitely long time spreading through the system~see
Fig. 6!. We expect that such a behavior exists for anyr
.r c . However, for r close to r c the long-time survival
events are extremely unlikely, which renders this method
efficient.

Our model in this case resembles a metastable sys
@22#. Such a system can exit the metastable state o
through formation of a sufficiently large seed of the sta
phase. In our case the EMPTY absorbing state correspo
for r .r c to a metastable state. Only when a sufficiently la
island of the active state occurs, the system is irrevers
driven toward the active~stable! state.

However, this metastable effect is much weaker in o
dimensional systems. In this case the critical point is ar
5r c50.491(2) @17#. Dynamical Monte Carlo simulation
for both PREY and EMPTY absorbing states are relativ
efficient ~see Fig. 7!. In the case of the EMPTY absorbin
state only a mild decrease ofN(t) is seen for smallt.

We do not fully understand why metastability is mu
weaker in thed51 case. Most likely it is due to a muc
easier formation of a sufficiently large seed of a stable ph
Outward spreading of such an active seed resembles a b
random walk and thus grows steadily in time. In thed52
.
tur
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case, the formation and growth of the active seed is m
complicated.

IV. CONCLUSIONS

In the present paper we studied oscillatory and dynam
properties of the two-dimensional prey-predator syste
Our results show that even for the increased range of in
actions an amplitude of oscillations vanishes in the therm
dynamic limit. It might suggest, as found by Grinsteinet al.
in a related context@12#, that oscillations might persist bu
only for d.2.

In addition to that, we examined the validity and ef
ciency of the dynamical Monte Carlo method for a mod
with two asymmetric absorbing states. It turns out that for
unstable absorbing state in the two-dimensional system
method is very inefficient. On the other hand, both absorb
states can be used within this method in a one-dimensio
model.
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